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SUMMARY
In this report we present a brief description of the research carried
out by faculty, staff, and students in the M.I.T. Laboratory for Information
and Decision Systems under Grant AFOSR-82-0258. The principal investigator
for this research is Professor Alan S. Willsky, and Prof. George C. Verghese
sexves as a senior researcher on the project. The time period covered in

\\ this status report is from January 1, 1983 to December 31, 1983,

ﬂ The basic scope of this grant is to carry out fundamental research in
the analysis, control, and estimation of complex systems, with particular
'§ emphasis on the use of methods of asymptotic analysis and multiple time

X scales to decompose complex problems into interconnections of simpler ones.

During the time period covered by this report, significant progress has

§ been made in several areas, leading to important results and to promising

directions for further research.

The specific topics covered in this report are:

9—1\ Analysis of Systems Possessing Multiple Time Scales. G der

N
»f% Q/H\Control and Estimation . (v
A list of publications supported by this grant is also included. We refer

Y

heavily to these papers and reports for detailed technical developments.
X
o R (AFSC)

3 FT1CE OF SCIENTIFIC RESEAS

] ATR FORCE OF- 70 DTIC .
‘ NQTICE OF qRInTTITAL . . i.o=r-nd 15
o L e nnaYT T oo . .

:, 5 Thls tec}';",. . S Vo 17 )‘12-
Ay B Approv’ Simitide
- I e pistribuatic TR

oy . e RPER

) | ' ‘ wrTHER }wi:\cal Information Division

N ‘ Chief, Techn

NN . |

."ﬂi- ¥

P SIMEN AN N

N ALY ST A SOA ALY, |



I. Analysis of Systems Possessing MultiplerTime Scales

During the past year we have made significant progress in this portion
of our research. Our recent work in this area is described in more detail
in {731, [9]1, [11]. This work has focused on the examination of systems of
the form

x(t) = A(e)x(t) (1.1)

where € is a small parameter. In our earlier work [1), (4] we had developed
a method for determining when it is possible toc construct and for construct-

ing an approximation to the solution of (1.1), of the form

Ayt A et ArErt
x(t) = e e cer @ x(0) + 0(¢g) (1.2)

‘§F{ where AiAj =0 if i ¥ j and (1.2) is uniformly valid on 0 < t< ™, Thus
(1.2) says that one can construct an €-independent similarity transfor-
mation £ = Tx which puts the system (1.1) into a biock-decoupled form which
explicitly decomposes the system into subsystems evolving at different

time-scales -~ i.e.

r

Fot Flet Fre t
‘;;:viy E(t) = diag (e ~ , e 1tct, e )E(0) + O(€) (1.3)
e
;ﬁﬁk-
r;;; The motivation for this line of research came from a desire to extend
; 3

the results and approaches developed by others, including Kokotovic,
Campbell, 0'Malley, Chow, Hoppensteadt, Khalil and Sannuti, who have
demonstrated the utility of time-scale decompositions for system analysis,
approximation, control, and estimation. The starting point for much of
this work is a model of the form of (1.1) but in which the time-scale

structure is explicitly displayed. For example, consider the two-time-

scale model studied extensively by Kokotovic and co-workers:
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(The form actually used in many of these other works can be brought to (1.4)
by a simple change of time-scale). For this model there is an extremely
straightforward procedure for determining if a two-time-scale decomposition
exists and, if so, for computing the fast and slow parts of the dynamics --
i.e. for constructing the similarity transformation which puts the system

into the form of (1.3) (with r = 2).. From this perspective we can view

the contribution of [1] as determining the existence of and constructing
such transformations when the time-scale behavior of the system is not
evident by inspection. The price that was paid in [2], however, was a
rather complex procedure involving nested projections and pseudo-inversions.

our work [7], [9] in the past year has had as its goal the development
of a methodology for analyzing (1.1) which combines the generality of [1]
with the intuitive and algebraically simple results associated with models
such as (1.4). We have now done this, and not only does this provide a
very clear connection between our earlier work and the work of others, but
it also establishes an algebraic framework for examining numerous other
problems involving systems with multiple time scales.

The basis for our approach is to view A(€) as a matrix over the
(local) ring W of functions of € that are analytic at € = 0. The matrix
A(€) then has a Smith decomposition

A(e) = P(e)D(g)Q(E) (1.5)

where P(€) and Q(€) are unimodular, i.e. |P(0)| # 0, |Q(0)| # 0 ana
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x& D(e) = diag (€ Iyt Im) (1.6)
%% where 0 < il o< im' and the identity matrices I, may have different
Al dime..sions. (We have assumed here that A(€) is nonsingular on some interval
'S‘ of the form (O, EO): in the more general case D(g£) would also include a zero
" diagonal block). The diagonal elements of D(€) are the invariant factors of
:;9 aA(e).
’sa As described in [7], because of the unimodularity of P(£), one can show
that a uniform approximation of x(t) with the same time scale structure as
(1.1) is P(0)z(t), where
2 =D(e)ARz , A = Q(0)P(0) (1.7)
Note that this system is in a form that is the natural generalization of
(1.4):
r'l— FeilAu eilalz ... e:llzalmﬂ —zﬂ
% 2 1- el?AZI ei?"22 ot el2"2’“ 2, (1.8)
}:‘; z e My eimn Coo . ey z
| m] L ml m2 mm _| L m-
Consequently there is a relatively straightforward procedure -- involving
successive Schur complements of A -- for determining if (1.8) (and hence
'“5 (1.1)) has well-behaved time scales, and for constructing the transformation
%g which brings (1.8) (and thus (1.1)) into diagonalized time-scale form (as
a in (1.3)).
%T‘ This result is, in our opinion, of great significance, as it makes
?/: clear the essential algebraic nature of the problem of time-scale decom-
'ﬁf positions. In particular, it establishes the fact that the invariant
::ﬁ factors of A(€) determine the time scale structure of (l1.1). This opens
®
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the door to the detailed examination of numerous other problems, some of
which we have bequn to examine and others which wait for the near future.

Some of these are as follows:

(1) Important issues in the design of feedback control for complex
systems are the way in which feedback couplings should be structured and the
effect such couplings have on overall system performance. Such effects
can be quite dramatic, as has been documented in numerous examples of control
designs based on reduced-order models (neglecting, for example, fast
dynamics) which lead to closed-~loop instabilities or severe performance
degradations. A natural question to ask in the context we have described
is the effect of feedback on time-scale structure. From our results we
see that a key question is that of invariant factor assignment -~ i.e.
the changing of invariant factors (and hence time scales) by feedback.

We have obtained some important results in this area, but we defer dis-

cussion of these to the following section.

(2) The key computational aspect of our time scale decmoposition
procedure is the determination of the Smith decomposition (1.5), (1.6).
We have been able to relate this computation éxplicitly to the projections
and pseudo- inversions in our earlier method [2]. Procedures exist for
the computation of Smith forms,+ and we have begun to examine the

implementation of such algorithms for the numerical computation of time

-f.

P. Van Dooren, P. Dewilde, and J. Vandewalle, "On the Determination of
the Smith-McMillan Form of a Rational Matrix from Its Laurent Expansion,”
IEEE Trans. Circuits and Systems, March 1979.

G. Verghese and T. Kailath, "Rational Matrix Structure,”" IEEE Trans. Aut.
Control, Vol. AC-26, No. 2, pp. 434-439, April 1981.
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4f§£ scale decompositions of systems of the form of (1.l).

(3) The form (1.5), (1.6) provides us with the basis for answering

sx
igg% another question we had posed in our proposal for this project. Specifically,
Ry consider the problem of characterizing matrices Al(e) and A2(€) that have

identical time-scale behavior -- i.e. they both have the same approximation

in (1.2) -- so that the difference AZ(E) - Al(s) is a regular perturbation

ERRARE
CRMNENE

of Al(e). Clearly one necessary condition is

et _
oy Dl(el = D, (€) : (1.9)
N
Y This, together with the condition
@,,
X
N form a set of sufficient conditions, but the latter is not necessary because
!
E of the nonuniqueness of P and Q in the Smith decomposition. More generally
one could allow
P.(0) = P,_(O)R (0) = R 1A, (0) (1.10)
1 T T2 r 90 = 2 :
where R is a block-diagonal similarity transformation with blocks of sizes
~
a equal to those in Dl(s), but even this is not a necessary condition, since
N5
Tt
X one can essentially add slow modes to faster ones without affecting asymp-
2o
N totic behavior. For example,
v
Ry 1o
*\"l‘ Al(E) =
Wi 0 -¢
~etmden.
Lt and
v{y
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have the property that

A (e)t A (e)t
. 1 2
lim sup lle -e
€¥0 t>0

"
o

This suggests that uppér-block diagonal transformations (with identities
along the diagonal) on the right of P do not affect asymptotic equivalence,
and the same is true of lower-block diagonal transformations (with identities
along the diagonal) on the left of Q. We afe presently completing the
verification of necessary and sufficient conditions along these lines (and

also allowing transformations as in (1.10)) for our notion of asymptotic

equivalence.

(4) The fact that our method yields an algebraic connection between
(1.1) and the explicit form of (1.7) provides us with a basis for evaluating
bounds on convérgence rates of time-scale approximations. Specifically,
we have hegun to investigate the éonstruction of such bounds in terms of
||P(€) - P(O)IL llQ(e) - Q(O)II, and the Schur complement structure of
Q(0)P(0). The work described in (6) to follow on higher order corrections
to the time-scale approximation (see (1.19) - (1.22)) will also be of

value here in providing a method for pinpointing the lead-order error

:'g‘ terms.

NI

-f ' (5) Points (3) and (4) above are extremely important in shedding light
bE o,

- b

fiki on theoretical problems in practical time-scale decomposition. In parti-
T cular, it is rarely the case that a system is given in the form (1.1) with
‘ﬁf{; a small parameter identified. Rather, one is interested in starting with
L

”?fi a system in the form
B x(t) = Fx(t) , (1.11)
L)

b

S

: B u" A LN I WA iy SR AN R P SIS B T I S ST S

PRI L IV IS A P JET R
' B il Al ’—(("



"‘\‘\-1 pai, il . LA SO S S N RPN SR D L A S - P . ey » LR B ¥ PR - - . . - .
N )
M
-~ ®
~
W
B S
ot N identifying a small number € and writing
o
S 5 i ’
\. F = iZo Bie (1.12)
'.‘:.
\.ib so that the resulting time-scale approximation based on this representation
>
L)
\»‘ is accurate to within some prescribed tolerance. This problem raises
numerous issues. For example, which small elements of F should be viewed
v\)'\
.'t-;_: as order 1, as order €, as order 62, etc.? Intuitively one must have that
>
<]
‘*—“ . > . ] [ .
s HP(S) - P(0) II is sufficiently smaller than the minimum singular value
W
, % of P(0) (similarly for Q(€) and Q(0)) so that it is fair to view the
3 ;1
"‘; difference P(€) - P(0) as a negligible (i.e. regular) perturbation of F
» xR
o
,':,-,"4 in the sense of (3). We plan to build on such insights in order to
' 7y
v 4 develop a constructive procedure for determining accurate time scale
B \O
*;’, decompositions of systems as in (1.11).
AN
S N
‘ (6) There are numerous ties to other research areas -- almost-
JA
% invariant subspaces and implicit systems (i.e. systems of the form
'.‘_Jj Ex = Ax), to name two -- which we feel can be illuminated significantly
) using the algebraic framework we have developed.
[Py
; g. {(7) We have also begun to use the results obtained to date to
100
examine more closely the conditions A(€) must satisfy in order for there
TP to exist an approximation as in (1.2). 1In particular, there are two ways
>
‘ .
>
1';' in which a system can fail to satisfy the conditions. Either A(g) vio-
-‘ L]
S
;"- lates the so-called multiple semisimple nullstructure (MSSNS) condition
(2) or it satisfies this but vioclates the multiple semistability
ot o . o : .
AP condition (Mc3T). If the first of these is violated it means that in
¢
"J the procedure for constructing the Ai in (1.2) (either as in [1l) or via
‘o Schur complementation as in [7]), [9])) one encounters one of these matrices
e
\
:ﬁ
N ‘
-
L L
}::.'
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0Ny
o
O which has a Jordan block of size greater than 1x lcorresponding to the
\-{
Ny
N zexro eigenvalue. For example,
<l
!
\$\ -€ 1
11 A(e) = (1.13)
200 -£  -€
o
.44
- is asymptotically stable for any € > 0 but it does not have a uniform
;{i approximation as in (1.2) Note that the Jordan form of A(€) changes
2 LY
1¢~j abruptly at € = 0 which indicates that there must exist a singularity
P
A at € = 0 in the similarity transformation that brings A(€) to Jordan
> o form. For this reason we have begun to study alternative canonical forms
=,
rEo . . . . -
;;,ﬁ of A(e) and in particular the relationship between the Smith ‘decomposition
e
2 and the eigenstructure of A(€). A conjecture which we are in the process
,?}:} of examining is that the eigenvalues of A(€) are of orders of € exactly
'1‘\‘..
"‘1'5
:3gj equal to the invariant factors if and only if A(e) has MSSNS. This fact,
e
. if true, will also be of great value in several control problems we are
';Qﬂ considering.
-"q
! , . . .
a:r: The point we have just made -- that a violation of the MSSNS con-
A
LA
Co
. dition corresponds to singularities in the similarity transformation that
.\. ! .
}”; brings A(g) to Jordan form -- suggests another related problem on which
:-"-
'n§a we have made progress recently. Specifically this problem is concerned
225,
= with using £-dependent similarity transformations of A(e) which are singular
.E;§ at 0 and cancel the singularities in the Jordan similarity transformation.
LAY
£ . \ .
ﬂx: That is, if A(€) does not have MSSNS, we are concerned with constructing
A
NN
..
ey a transformation T(c) so that
2 -1
A(e) = T(E)A(E)T " (€) (1.14)

does have MSSNS. What this in essence does is identify those components

of x(t) which require scaling, an idea which has been used by Sannuti
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+ . <o .
and Wason . Again our work to date indicates that the algebraic approach
we have developed provides precisely the correct framework for answering
this question in the simplest and most illuminating fashion. As an

example, consider

-€ 1
A(e) = (1.15)

If we scale the state

A € 0
X = T(E)x = X (1.16)
0 1
we find that
A -€ €
ae) = | o (1.17)

which does satisfy the MSSNS condition. Note that the invariant factors
of A(e) are 1 and 82, while both invariant factors of A(€) are € , in-
dicating this this system has only one time scale.

In [11] we have considered an alternative approach to the problem

™)
e

AS
¢

of deriving approximations for ~ particular class of systems which

.15

ﬂ“

violate the MSSNS condition. 1In particular in this paper we examine a

"

specific  model structure commonly used in analyzing interconnected

power systems. Specifically we have considered models of the form

1.

P, Sannuti and H. Wason, "Singular Perturbation Analysis of Cheap Control
Problems," Proc. 22nd IEEE Conf. on Decision and Control, San Antonio,
Texas, Dec. 1983

P. Sannuti and H. Wason, Int. J. Contr., Vol. 37, 1983, pp. 1259-1286.

- ~
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J‘:&;
3
.'.E 0 F (Ae)
. A(g) =
\ 1 0
A 38
ASS)
i": where F(€) is an infinitesimal stochastic matrix. Because of this, F(g)
AN
.y has a fixed zero eigenvalue and thus A(0) doesn't have semisimple null
28 structure. However, using the results in [2] on aggregation of finite-~
1543
o state Markov processes we are able to derive an approximation which in
2% essence corresponds to keeping the dominant term is each element of
;‘;4 exp{ A(€)t}. For the class of systems considered in [11] this can be
A4t
A 3: accomplished in a relatively simple and intuitively appealing fashion.
o
)
N We are at present considering generalizations to other systems, and the
A
5:‘ development of a precise definition of the way in which one should think
&)
TN . . . . & t
.a§ of this approximation as being good. For example, %X(t) = e is a "good"
A
152% s (1+e)t | .
RN approximation of x(t) = e in the sense that the coefficient
?5 multiplying t in the exponent of
oY
1‘:-‘: X (t)
N x(t)
. . . . . : (0.9)t
54 is of strictly higher order in € (which is not true of e or
o
. ‘-":' (1.1t
A3 e , for example).
(o
bty The second way in which a system can fail to have an approximation
,ﬁsj as in (1.2) is if it satisfies the MSSNS condition but not the:MSST
w3 —
.ﬁ:: condition. This could happen for one of two reasons. One possibility
‘o‘\-‘ .
-— is that there are unstable poles such as (€ + €2). The leading term
;&H approximation described in the preceding paragraph is aimed at such a
ot
zﬁ situation. The other possibility is that A(€) is stable for £ > 0
Cd
~ “
A but some of the eigenvalues of one of the Ai in (1.2) are purely
’is imaginary. This corresponds to a situation in which the rate of
i
Y
12
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oscillation in a complex mode is of lower order (and hence faster) than
the damping. Consider for example
-€ 1
A(g) = (1.18)
-1 -€

which yields responses of the form e-et sin t.

What we are considering in such cases is the inclusion of higher-
-43 order terms in the asyptotic expansion, or, equivalently allowing the
Ai in (1.2) to violate the condition AiAj = 0. To see how such a

decomposition might be obtained, consider y(t) = P-l(e)x(t). Then
y(t) = D(e)A(e)y(t), A(e) = Q(E)P(€) (1.19)

Compare this to the process z(t) defined in (1.7). If we define the
"correction process"

-D(g)At
=e

w(t) v (t) (1.20)
we find that
w(t) = [-D(e)A + e DIEIAtL )L BBt it (1.21)

and an investigation of the structure of the matrix in (1.2) should
identify the desired higher-order corrections. As a very simple example,
consider again (1.18). 1In this case
- 0
w(t) = w(t) (1.22)
0 -&
Our present work along the lines just described is quite close to
providing a general procedure for approximating dynamics of the form

of (1.1) which violate the conditions for (1.2) to exist. Such a pro-

cedure would involve €-dependent similarity transformations to obtain a

transformed system which satisfies the MSSNS condition, leading-order
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approximations for unstable modes of systems which satisfy MSSNS but have
complex poles with real parts of higher order than imaginary parts.
As an example of a system which requires two of these steps, consider

again A(g) in (1.13). 1If we scale A(e) as in (1.14) with

€1/2 0
T(E) = (1.23)
0 1l
we obtain
-€ el/?
Re) = (1.24)
—~€l/2 £

which is essentially of the same form as in (1.18) (one need only identify

E1/2 as the fundamental parameter rather than € and perform a simple

time scaling).
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l‘-.
1\1.
ﬁ;} Our research in this area has had two major thrusts. The first of these
¢
: builds directly on the tools decribed in the preceding section. Specifically
3{: we have focused attention on an examination of systems of the form
o

;“ x(t) = A(E)x(t) + B(E)ul(t) (2.1)
N y(t) = C(e)x(t) (2.2)
N

w5

G

o Our ultimate aim is to develop a complete picture of how time-scales, weak

couplings, and differences in the scales of controllability and observability

i ’:

5;1 of various components of the state and in the weightings of states and controls
oo

ﬁa in the system design criterion interact in determining the structure of
;‘ control designs. Our goal is to develop constructive procedures for designing
NG

:ﬁ hierarchical or decentralized control systems which take into account these
\A
‘zfv scaling differences to achieve nearly optimal performance.
- Notable contributions have been made on various aspects of this subject,
Ny

X but much remains to be done. Our results to date indicate that the algebraic
;5: approach outlined in the preceding section provides an excellent framework
4 for examining this subject, for obtaining results which extend considerably
&

N

<
1 what is known at present, and for shedding substantial light on the nature

X

of problems of this type by uncovering and explicitly examining the critical

q:‘ mathematical constructs which form the heart of these problems. For example,
»551 as indicated in the preceding section, our results have shown that the
.
Jﬁ invariant factors of A(€) determine the open-loop time scales of (2.1),
) assuming that the MSSNS condition is satisfied (if is is not, some scaling
4
g must be performed as described in Section I). Consequently a natural

question to ask is to determine precisely how the invariant factors of

(2.1) can be modified by feedback of the form

Y NIP L Te
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u(t) = K(e)x(t) (2.3)

IR

-

fs (where K(€) is again a matrix over the ring of functions analytic at €=0).
;g. By allowing t£-dependence in (2.3) we are in essence considering the
?é question of feedback structure. That is, the matrix K(0) determines which
A states are strongly coupled to which controls, the matrix
R
I K(g)-K(0)

[

GG

determines the next level of coupling in the hierarchy, etc.

At this time, we have obtained important results on invariant factor

A
.

2
*

‘.
24
3 )

assignment [7), [9]. 1In particular if A(e) and B(e) are left coprime,

-

i.e., if [A(0)iB(0)] has full row rank, then the closed-loop system matrix

F(e) = A(e) + B(€)K(¢) (2.4)

can have no more than b = rank B(0) non-unit invariant factors, and these

3 J
b factors can be made to equal an arbitrary set € 1,...,8 b (with eo =1,

G
.l. r ¥
Yot

:ﬁ € = 0) by an appropriate choice of K(€) which we can construct explicitly.
2

‘Q? This result opens the way for the consideration of numerous other problems:
i (1) Precisely how can the eigenvectors of F(g) be controlled as well

g'; as the invariant factors? That is, how can we influence which states

§; evolve at which time scales?

.¥3

g (2) Can K(€) be chosen so that desired invariant factors are achieved
.§i and F(€) has MSSNS? 1If not, characterize the required scaling of F(€).

=

(3) Note that if b = rank B(0) < m = rank B(e) for £>0, our result

'5:‘1'*

indicates that fewer time scales can be affected than we have independent

A

controls. In such a case, some of the controls are uniformly weak, and the

only way in which time scales could be influenced in general is by high
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~ gain -- i.e. by allowing terms of the form 1/¢ in K(g) or equivalently by

allowing input scaling

;?l u(t) = s(e)i(t) (2.5)
i% so that

e %(t) = A(e)x(t) + B(e)u(t) (2.6)
3

where B(€) = B(€)S 1(e) is still analytic at €=0 and has the property that

» B(O) is of full rank. For example, the time scale of

X = =X + £u (2.7)

can be charged by using feedback of the form

< u= @+ KEx (2.8)
€

L%

¥

ped (4) Another important problem is the case when [A(€):B(€)] does not

- have full row rank. In this case, there are two avenues of investigation.

gé The first of these involves the use of scaling of the inputs and possibly

) -

Eg the states to achieve the coprime and B(0) full rank conditions. In our

q, other approach, we suppose that we are restricted to using K{e€) which are

(D

id analytic at €=0 (and thus perform no input scaling). In this case F(g)

o

2; is of the form

& — - — —

& F(e) = W(e)F(e), F(e) = A(e) + B(e)K(e) (2.9)

0

:g where W(E) is a greatest common left divisor of A(g), B(g), and X(e),lg(e)

T} are coprime. If the invariant factors of F(g), w(g), and F(€) are denoted

>

--I‘ ——

) by fi(e), wi(e), and fi(e) and are ordered such that the ith one divides

[\

Ty

= the (i+l)-th one, we have that

s _ |

1 wi(s)lfi(e) and £, ()| £, (€) (2.10)




gt

%

.

The first condition shows that every invariant factor of F(€) must contain

<lgefe: e By

the corresponding invariant factor of W(eg). The ?i(s) are governed by our

: result in the coprime case, and thus some conclusions about the fi(s) can

%‘ be drawn from the second divisibility condition in (2.10). Note that this
g does not provide a complete solution,and open questions remain. In
" particular, in [9] we present a result on one set of conditions under which
gé fi(e) = wi(eifi(e). Work on more complete characterizations of fi(e) in other
;: cases is continuing.
: (5) There are close ties between our work and several other research
g areas which we have begun to explore and develop. In particular, questions
4 such as (1) are related to the much broader subject of the geometric
) structure of (2.1) which in turn has ties to the work on almost (A,B)
gi invariant subspaces of Willems+. In our case we have additional structure,
§~ however, provided by the various scales defined by increasing orders in
Y €. Also, just as the work of Willems has close ties to the topic of high
i gain feedback, so does our work, and we plan to explore this avenue. 1In
&
,f particular we have begun to examine the interpretation and extension of the

approach of Sannuti and Wason (referenced earlier) to our framework. As

e Yoo o,

a2 final point, we note that it is certainly possible to consider choices

g

e of input scaling so that ﬁ(e) has singularities at €=0. This appears at
" least cosmetically to be more closely tied to work such as that on cheap
Al

"q A

:: control and high-gain feedback. However, if B(€) contains terms of the form
,; l/en, a simple time scaling (so that the fastest time scale is the "new"
-

v -

¢ﬂ J.C. Willems, "Almost Invariant Subspaces: An Approach to High Gain Feed-
}’ back Design -- Part I: Almost Controlled Invariant Subspaces,"

IEEE Trans. on Aut. Control, Vol. AC-26, 1982, pp. 235-252,
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:25 time variable t) removes these singularities. Consequently our investigation

ik‘ will allow us to consider high gain by a simple time scale identification.

?, Another area [9] in which we have begun work is in the examination of a
g generalization of the cheap control problem which allows the open-loop system
%gg to have several time scales and allows differences in the scales at which
'gﬂ different states and controls are weighted. Specifically,consider the problem
et
;ki of choosing a control law for (2.1) to minimize

«©
J = f [x'(£)Q(e)x(t) + u'(t)R(e)u(t)ldt (2.11)
°
1<ﬁ The Hamiltonian matrix for this problem is
Q-:

Py
.. A(€)  -B(E)R™M(e)B' ()

Y -Q (e -A' (€
o Q(€) (€)

j

Define GF(S) and Gb(s) as the positive definite solutions of the algebraic

&

Riccati equations

0 (2.13a)

' - -1 '
Of(e)A(e) + A (e)eF(e) GF(E)B(S)R (e)B (e)@F(s) + Q(g)

-

6, (S)A(e) + A’ (€)G (€) + 0, (E)B(E)R T()B' ()0, (€) - () = 0 (2.13b)

A A s e
F AN XX

Then one can construct a similarity transformation

27

GF(e) - I

T(€) = (2.14)
O (e) - 1

P

| )

ey
ph. Y

X

operating on H(g) to yield

S DU O

4 -
i -A'(e) + Of(e)B(E)R l(E)B‘ (£) 0

ﬁ(e) = -1
‘ 0 -A'(e) - G)b(e)s(e)R (e)B" (g)

(2.15)
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;;éé which indicates the well-known result that the eigenvalues of H(g€) are also
;f: those of the optimal closed-loop system. This suggests that if H(€) has
%55. MSSNS, invariant factor analysis of H(€) may yield the time-scale structure
‘Etﬁ of the closed-loop system. However, the similarity transformation bringing
.
;2 v H(€) to the form (2.15) is unimodular if and only if OF(E) + Gb(e) is

unimodular, which will not be the case in nearly singular control problems.
This obviously points to the need for scaling and to the roles of GF(E),
Gb(e), and H(€) in determining the requisite scaling and the resulting time
scale structure. Sannuti and Wason have investigated this point in the
special case in which R(€) = €R is the only £-dependence (see also the
closely related and important work of Hautus and Silverman+). We are now
involved in examination of the general problem we have posed using the
algebraic framework we have developed, and the extension of this procblem
to include e-dependent observations in order to achieve our objective of
developing a complete picture of the interplays among scales on open-loop
dynamics, control effectiveness, cbservability, and weightings on inputs

and states.

We have also made progress in our research involving estimation of

finite-state Markov processes (FSMP's) possessing several time scales.

— The basis for this research is the methodology developed in [2] which

i: N uses our results on decomposing systems of the form (1.1) and the basic
.:}a properties of FSMP's to construct a hierarchy of simpler, aggregated models
iE: of FSMP's which contain rare transitions. Each model ignores transitions

3¢
LY

J
N

that occur at a time scale far greater than the one with which the model

O is concerned and aggregates the effects of transitions that occur at faster
o
T,
px. M.L.J. Hautus and L.M. Silverman, "System Structure and Singular Control,"
47y Linear Algebra & Applications, Vol. 50, pp. 369-402, 1983.
'y
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scales. The existence of such a hierarchy suggests the use of estimator
structures which take advantage of such a decomposition of the underlying
process, thereby offering the possibility of reducing extremely complex
estimation problems to sets of far simpler ones.

Our research in this area has consisted of two distinct pieces.
One the one hand we have made progress in performing detailed asymptotic
analyses of very simple singularly perturbed FSMP estimation problems [12]
and this work has produced both several important insights into what tyées
of performance measures are important for such estimators and an analytical
approach for calculating asymptotic approximations to such measures. The
other portion of our work [8], [10] has dealt directly with a class of FSMP's
of great complexity but which also possess important structural features.
Our objective in this area has been to develop estimator structures that
take direct advantage of this structure. By doing so, it has been our
hope to uncover important principles and concegpts that could then be used
both for designing estimators for other classes of problems and for suggesting
promising and important theoretical directions.

The research described in [10] has as its motivation the automated
analysis of electrocardiograms (ECG's). Our reason for choosing this
focus is not only that ECG analysis is an important and challenging problem
but alsc that it is necessary to establish a context for an investigation
of this type. The class of "large and complex FSMP's" is far too amorphous
to yield interesting insights and analysis; what is needed is to define
a structured class of FSMP's with clear estimation objectives. Thus an
accurate statement is that ECG analysis has guided the choices of estimation

structures and problems we are investigating, but that the class of problems

we are considering is by no means restricted to ECG analysis and includes




- d - AR R AR RS S I s B L NS

-‘ i .,._._.;2.2;.

%
‘0

y:ﬁ numerous other complex signal analysis problems as well as topics such as
43% multitarget tracking and complex queueing networks.

‘ ) To be more specific, the problems we have been analyzing are hybrid in
Al

Dfﬁ nature -- that is, they involve both discrete- and continuocus-valued

13

:fﬂ processes, where one can think of sequences of discrete states as events

o which influence the observed continuous waveforms. In particular, the type
TFat

%% of model that we are considering consists of an interconnection of discrete-
‘%; state processes where the state of one process can influence the transition

rates in the other processes (as we will point out shortly, this is precisely
how one can interpret the results of [2]), and particular transitions in

some of these processes initiate the generation of continuous waveforms.

ffL The actual observation is the superposition of the continuous waveforms
)

”gﬂ that have been generated (just as the ECG is the superposition of the

e

LN measured electrical activity of the various regions the heart.

In [8], [10] a methodology is developed for modeling cardiac activity
and in particular its effect on the observed ECG using models of this type.

These models have several very important aspects. Two of these are timing

¥ and control. The issue of control is related to the fact that the

AW

;E‘ electrical state of one portion of the heart -- represented by one of the
e

3?5 finite-state processes in the model -- can strongly influence the future

3: behavior of other portions of the heart. The issue of timing is concerned
:Eé with the fact that one can observe dramatic differences in the influence
izs the state of one portion of the heart can have on another, depending upon
25; the state the other portion is in (see [8] and [10] for numerous examples).
iﬁ A third extremely important aspect of these cardiac models is that the time
75" scale at which interactions among the discrete models change and at which

65 continuous waveforms are initiated is far slower than the transition-by-

e
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transition scale at which each process evolves. It is this feature that

suggests a decomposition of the estimator (which processes the cbserved
ECG in order to track cardiac activity) in which the estimator for each
subprocess has a highly aggregated model of the remainder of the overall
process that is accurate enough at the coarse time scale at which it is
important. This leads to estimation structures consisting of interconnections
of discrete-state estimators which take as inputs the observed ECG and
estimates from other local estimators and which produce estimates of state
trajectories.

In the recent past we have been developing and analyzing estimators
for processes that possess the features we have just described. Our analysis
has been driven by concerns that differ from those which are usually
considered in examining estimator performance but which are quite natural
for discrete processes of the type we have described and in particular for
the ECG problem. In particular, in usual estimation problems one measures

performance by comparing the actual state and the estimate at a particular

point in time. In discrete event-oriented problems such as ECG analysis one

is more interested in the timing of events (especially those which determine
the control behavior of the heart). Thus one is concerned with errors in

time corresponding to particular values of the state or state transition.

That is, an estimate X may be considered to be quite good even if x(t) - Q(t)
is often quite large if in fact the state and estimate trajectories have
only small time shifts between them. A second important performance measure
is error recovery, a concept that is most easily stated in coding terms.
Specifically, if we think of the observations (e.g. the ECG) as an encoding
of discrete events, then we would like our decoder (estimator) to have the
property that the occurrence of inevitable decoding errors should not lead

to long strings of subsequent decoding errors.
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The other portion of our research on FSMP's [12] deals with the detailed
asymptotic analysis of a simple FSMP estimation problem. While this problem
is not rich enough to capture all aspects of the concerns described in the
preceding paragraph, it has proved to be extremely useful in allowing us
to begin to develop quantitative, analytic methods for problems of this type.
Just as in the control work described earlier in this section, our funda-
mental interest in this problem is to understand how process time scale,
observability (i.e. measurement information rates) and estimation criterion
interact.

A first problem considered in [12] is the simple two-state process
¥ (t) depicted in Figure 2.1 where Xl and XZ are of the same order of magnitude

and where we have observations

dy (t) h(x(t))dt + baw(t) (2.16)

where E[dw? (t)] = dt. Letting M. = Prob {x(t) = 1l|y(s), 0<s<t} (2.17)

1

m = Prob {x(t) = 1]y(s), 0<s<t}

we can write

dﬂl(t) = [—Xlnl(t) + k2(1-w1(t))]dt
(2.18)

+ 15 (h(t) - B (£))1dy(e) - h(n (e))dt]
b

where

ﬁ(wl<t)) = h(D)m (£) + h(2) (A-T, (£)) (2.19)

As discussed in [12] there are four natural guantitative measures for the |

performance of this filter:

(1) Filter bias. This is the distance between the equilibrium
value of ﬂl(t) given that x(t) = 1 or 2 respectively and

SO

-----

LRI MO D R S SR




A 2 A
4

o S

Yy,

SN
—

Figure 2.1

l. V
.

ALy NN T XARLIA
AT TS
/ N
4 =
T, ~
N ) I 1y
N \ '/‘
! _ 47
I ) I !
m . m
QIR I |
LN
I\ A= T~ |
}/ I N
/\ ! _\:3 AN
\ .
\ ~ o/

.

S

o

LN

Rl e Vo7 St Uy

LY

1
»

~

., P - ‘ - .- e e - - N "N _-. (S -, _-. Nt W e
A O T G o Iy T AN o T N NN W N
./ k) & 2 . N . X




NI

LR D R I R

"%

- {eaceeae
Uy

.

oy Hiaanhivie

CAEME T2 d

8,
P

U S S N S
J A A .

the corresponding boundary -- i.e. 7, =1 if x(t) = 1 or
wl =0 if x(t) = 0. This yields a méasure of the ability
to distinguish between the two states.

(2) Variance. The variance of deviations of 7, around its
equilibrium points excluding large deviations (i.e. false
alarms). This corresponds most closely to the usual notion
of estimation performance.

(3) Detection delays. The time it takes the filter to evolve from
one equilibrium point to a detection threshold near the other
equilibrium point following a transition in x(t).

(4) Mean time between false alarms. The expected time between

crossings of the threshold corresponding to the incorrect
value of a(t) given that x(t) has not changed.

All of these involve examining (2.18) assuming x(t) =1 or x(t) = 2.
If x(t) = 1 over the interval of interest ﬂl(t) evolves according to
dﬂl(t) = [—Xlﬂl(t) + Kz(l-ﬂl(t))]dt
+ k%m(8) (-m ()28t + Km (£) (-7 (£)) 8w (¢) (2.20)

where

2 A (h(t) —h(t))z (2.21)

b

is the rate at which information is accumulated that distinguishes between
the hypotheses x(t) = 1 and x(t) = 2. If x(t) = 2 over the time interwval,

then

dﬂl(t) = [-xlﬂl(t) + Xz(l—wl(t))]dt

2 2
- K ﬂl(t) (l—ﬂl(t))dt + Kﬂl(t)(l—ﬂl(t))dw(t) (2.22)

Note that in either case Wl(t) is a diffusion process on the bounded domain
[0,1] and in fact the boundaries of this domain are so-called entrance

boundaries.
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:~ The evaluation of the performance measures described previously involves
x

>

Y

j\ the detailed study of (2.20) and (2.22). For example, the equilibria regquired
»
{ to determine filter bias are the stationary points of deterministic systems
:j obtained by setting the noise terms to zero in these equations. Note also
.

X R . . . .

o that it is here that we begin to see a need for asymptotic analysis -- we

A

g

have two rates, one determined by x> and one by A = (Xl + Xz)/2. It should

:ék therefore not be surprising that
£
o K (2.23)

g

Xa ~

O30 v %
#_ wOniS

{ l‘ ‘.
Ay

(which roughly has the interpretation as the expected amount of information
collected between x(t) Transitions ) is the critical quantity in evaluating

asymptotic approximations to the performance measures just described. 1In

A

;g particular, we have analyzed in detail the case where A = 0(g), i.e. where

3? Y is large (0(%)). If we think of defining detection thresholds at values

Jc‘ T = § and mo= 1-6, we have determined that § must be chosen very carefully
'ig as a function of € in order to obtain detection delays that are small compared
f? to the time between transitions and also to avoid catastrophic streams of

false alarms. 1In particular a choice of §(g) = O(VE) leads to detection

s

delays which go to infinity but at a much slower rate «-1096(8))/K2) than

i the time between transitions (0(%)). Thus the estimator is correct "most
TT of the time". Also, with this choice of threshold there will be 0(1l) false
i: alarm between x(t) transitions.

N

i: The problem just described serves as a first step in analyzing the

two-time-scale process (xl(t), xz(t)) illustrated in Figure 2.2 with

(s

ph
N measurements

‘3

"\

,l
7:5 dyl(t) = hl(xl(t))dt + bldwl(t) (2.24)
:ﬁ dyz(t) = hz(xz(t))dt + bzdwz(t) (2.25)
N




Py

o1

P R

a

NN
0.y s
WPt

FALTS P L P

'3

Pl ol ol Tl

AN

-
~— A

N
i
-
s
Y
LY
]

~28<

First note that using the analysis in [2] this process can be decomposed
into a hierarchy of two two-state process: a slow process corresponding
to transitions in xl(t) and a fast process corresponding to xz(t). Note
that this structure is exactly of the form under investigation in [8],
[10] -~ an interconnection of two processes in which rare transitions

in the xl(t) process influence the transition rates (u1 and u2 vs. nl and

hz) of the fast process.

The structure of the estimator under investigation is the following:

(1) The measurements y, (t) are processed using the aggregate two-
state Markov model for x. (t) evolving at the slow time scale.
Since the difference betWween the actual evolution of x_ (t)
and that predicted by the approximate model is O(g), tﬁe
conclusions described previously for the two-state process
hold here as well.

(2) Given the estimate x (t), an estimate of x (t) is generated
by using y, and the two-state model for x %t) corresponding
to x, (t). "Performance here can be evaluated in a fashion similar
to tﬁat described for the process in Figure 2.1. Once can
evaluate the performance when %, is correct or in error, but
the difference is significant only if the H's and nN's are of
different orders of magnitude.

(3) The estimator structure described by (1), (2) is not nearly
optimal, but performs well under a wide range of conditions.
The reason for this suboptimality is that there may exist
nonnegligible information in y_ concerning x. -- whether this
difference is significant or not depends on %he size of the
differences between the HU's and N's. Note that even if
this difference is of no major consequence for estimating
X,y it may be significant for estimating Xy since X, changes
at a far slower time scale (and thus information can be
accumulated over a much longer time period). We are presently
completing our analysis of how the information in y_ can be
incorporated into thg estimation of x,. The basic idea is
the following. Let h_(x.) be defined as the expected value
of h (xz(t)) given that Xy is the correct value and x2(t)
has reached its ergodic distribution. That is

h. (t) 2y W + -1 (2) (2.26)
2 u1+u2 2 11, 2

~ n nl

hy(2) = A hy (1) + o h, (2) (2.27)
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N Then the measurement y, can be written as

., t'l.;ﬂ a, ¥
Py

e dyz(t) = hz(xl(t))dt + [hz(xz(t)) - hz(xl(t))]dt + bzdwz(t) (2.28)

[
’

"N Intuitively, if the information rate

‘{ M A - A
h2(1) h2(2)

N b,
b L
3N is comparable to or greater than

po

"’" 2
hl(l) - h1(2)

5
)',"« b
.

2

>, _J

one would expect y, to be of value in estimating x,. Furthermore, if the
2 1

4 conditional distribution of X evolves at a slower time scale than the

f} process x,, one would expect that the term in brackets in (2.28) is

- 2

N negligible as far as Xy estimation is concerned (although it is all-important

as far as the estimation of x2 is concerned!). In this case, we can use the

N approximation

el = h
ﬂ‘ dyz(t) hz(xl(t))dt + bzdwz(t) (2.29)

1

S
"ﬁ: for the x, -estimator which then has a form analogous to (2.18) except that
j:gk it is driven by both observations.
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